# Microcalorimetric Study on the Oscillating System of Two-phase Reaction of Aqueous Acid with Primary Amine in Chloroform

ZHANG, Hong-Lin<sup>\*,a</sup>(张洪林) YU, Xiu-Fang<sup>a</sup>(于秀芳) LU, Cheng-Xue<sup>b</sup>(鲁成学) SUN, Si-Xiu<sup>b</sup>(孙思修) GU, Guo-Hua<sup>c</sup>(古国华) FU, Xun<sup>c</sup>(傅洵)

It has been found that the two-phase reactions of aqueous HCl, HOAc or  $\rm H_3PO_4$  with primary amine  $\rm N_{1923}$  in chloroform are oscillating reactions. Their power-time curves were measured by the titration microcalorimetric method, and the induction period ( $t_{\rm in}$ ). The first oscillating period ( $t_{\rm p,1}$ ) and the second oscillating period ( $t_{\rm p,2}$ ) were determined. The apparent activating parameters and the orders of the oscillating systems were calculated and the following relationships were established: for the oscillating system of hydrochloric acid  $t_{\rm in} \propto c_{\rm HCl}^{0.147} \exp(\frac{1.35\times10^3}{T})$ ,  $t_{\rm p,1} \propto c_{\rm HCl}^{0.241} \exp(\frac{4.33\times10^3}{T})$ ,  $t_{\rm p,2} \propto c_{\rm HCl}^{0.290} \exp(\frac{5.59\times10^3}{T})$ ; for the oscillating system of acetic acid,  $t_{\rm in} \propto c_{\rm HOAc}^{0.883} \exp(\frac{2.32\times10^3}{T})$ ,  $t_{\rm p,1} \propto c_{\rm HOAc}^{0.399} \exp(\frac{4.50\times10^3}{T})$ ,  $t_{\rm p,2} \propto c_{\rm HOAc}^{0.301} \exp(\frac{5.88\times10^3}{T})$ ; for the oscillating system of phosphoric acid,  $t_{\rm in} \propto c_{\rm H_3PO_4}^{1.14} \exp(\frac{7.70\times10^4}{T})$ ,  $t_{\rm p,1} \propto c_{\rm H_3PO_4}^{1.42} \exp(\frac{7.70\times10^4}{T})$ ,  $t_{\rm p,1} \propto c_{\rm H_3PO_4}^{1.42} \exp(\frac{1.14\times10^4}{T})$ ,  $t_{\rm p,2} \propto c_{\rm H_3PO_4}^{1.47} \exp(\frac{1.27\times10^4}{T})$ .

Keywords oscillating system, hydrochloric acid, acetic acid, phosphoric acid, primary amine  $N_{1923}$ , titration microcalorimetric method

#### Introduction

Since Belousov<sup>1</sup> found for the first time that the oxidation of citric acid by bromic acid in homogeneous system could produce an oscillating reaction system in the presence of Ce<sup>3+</sup> as catalyst, much research has been done concerning the oscillating regularity.<sup>2-7</sup>

Primary amine  $N_{1923}(RCH(NH_2)R', R$  and R' represent alkyl of  $C_{9-11}$ , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences): content of primary amine is bigger than 99.8%, content of nitrogen is  $3.61\times10^{-3}$  mol/g and average molecular weight is 291.8. It is a good extract for acids and metals. The extractions of acetic acid, <sup>8</sup> citric acid<sup>9</sup> and hydrochloric acid<sup>10</sup> by  $N_{1923}$  have been reported.

We found an interesting heterogeneous oscillating phenomenon when the thermochemistry of the two-phase reactions between aqueous solutions of inorganic acid and  $N_{1923}$  in chloroform was studied. The apparent activating parameters and the orders of these oscillating systems are reported in this paper.

## **Experimental**

## Instrument

The 2277 thermal activity monitor is produced by Thermometric AB (Sweden). Four independent calorimetric units are hold in a water bath (23 L) with working temperatures between 10 and 90 °C. The operation can be maintained at a given temperature within  $\pm\,10^{-4}$  °C over 24 h. The detection limit of the monitor is 0.15  $\mu\mathrm{W}$  and the baseline stability is 0.20  $\mu\mathrm{W}$  over 24 h.

#### Materials

 $N_{1923}$ , the average molecular weight is 291.8. The content of primary amine is bigger than 99.8% and the content of nitrogen is  $3.61\times10^{-3}$  mol/g. HCl, HOAc and  $H_3PO_4$  are all analytical grade. Solution 1: solution of hydrochloric acid (0.025, 0.05, 0.10, 0.20 mol/L); solution 2: solution of acetic acid (0.10, 0.20, 0.30, 0.50 mol/L); solution 3: solution of phosphoric acid (0.20, 0.30, 0.40 mol/L); solution 4: primary amine  $N_{1923}$  (0.50 mol/L) in chloroform.

#### Method

In the experiment, two 4 mL of ampoule units were used. One of them contained the sample solution and the other was the reference. The sample solution contained 1 mL of

<sup>&</sup>lt;sup>a</sup> Department of Chemistry, Qufu Normal University, Qufu, Shandong 273165, China

<sup>&</sup>lt;sup>b</sup> Department of Chemistry, School of Chemical and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China

<sup>&</sup>lt;sup>c</sup> Department of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China

<sup>\*</sup> E-mail: zhanghl@qfnu.edu.cn
Received December 10, 2001; revised May 9, 2002; accepted September 3, 2002.
Project supported by the Natural Science Foundation of Shandong Province (No. Y2000B03).

solution 1, 2 or 3 and 1 mL of solution 4, the reference contained 1 mL of acid solution and 1 mL of chloroform. The power-time curves were recorded when the amplifier of the monitor was set at 1000  $\mu$ W and the stirrer shaft was set at the desired speed of 120 r/min for sample solution. When the recording pen returned to the baseline and became stabilized, the process of the oscillating system was completed.

## Results and discussion

The power-time curves of the two-phase reaction of inorganic acid with  $N_{1923}$  are determined at different temperatures. The obtained values of the induction period ( $t_{\rm in}$ ), the first oscillating period ( $t_{\rm p,1}$ ) and the second oscillating period ( $t_{\rm p,2}$ ), are listed in Table 1.

The power-time curves of the reactions were also determined at different initial concentrations of acids. The results are listed in Table 2.

Taking the reaction of aqueous HCl with  $N_{1923}$  in chloroform as an example, its power-time curves at different temperatures and different initial concentrations of HCl are shown in Figs. 1 and 2, respectively.

Effects of different temperatures on the oscillating systems

The results show that the values of  $t_{\rm in}$ ,  $t_{\rm p.1}$  and  $t_{\rm p.2}$  decrease with the increasing of temperature for all the systems. From the relation of  $\ln k = \ln A - \frac{E}{RT}$  (Arrhenius theory) and  $\ln k = \ln \frac{1}{t} + {\rm A'}$  (reported in Ref. 11), we have  $\ln \frac{1}{t} = -\frac{E}{RT} + {\rm A'}$ . Using the obtained values of  $t_{\rm in}$ ,  $t_{\rm p.1}$  and  $t_{\rm p.2}$  at

different temperatures to draw a plot of  $\ln \frac{1}{t}$  vs.  $\frac{1}{T}$ , both E and A'' can be obtained from the following equations.

For HCl-N<sub>1923</sub> oscillating system:

$$\ln \frac{1}{t_{\rm in}} = -1.66 - \frac{1.35 \times 10^3}{T}$$

$$r = 0.9998 \quad E_{\rm in} = 11.2 \text{ kJ/mol}$$
(1)

$$\ln \frac{1}{t_{p.1}} = 8.66 - \frac{4.33 \times 10^3}{T}$$

$$r = 0.9993 \quad E_{p.1} = 36.0 \text{ kJ/mol}$$
(2)

$$\ln \frac{1}{t_{\rm p.2}} = 13.1 - \frac{5.59 \times 10^3}{T}$$

$$r = 0.9999 \quad E_{\rm P.2} = 46.4 \text{ kJ/mol}$$
(3)

For HOAc-N<sub>1923</sub> oscillating system:

$$\ln \frac{1}{t_{\rm in}} = 1.69 - \frac{2.32 \times 10^3}{T}$$

$$r = 0.9957 \quad E_{\rm in} = 19.3 \text{ kJ/mol}$$
(4)

$$\ln \frac{1}{t_{\text{p.1}}} = 9.42 - \frac{4.50 \times 10^3}{T}$$

$$r = 0.9910 \quad E_{\text{p.1}} = 37.4 \text{ kJ/mol}$$
(5)

$$\ln \frac{1}{t_{\rm p.2}} = 14.3 - \frac{5.88 \times 10^3}{T}$$

$$r = 0.9766 \quad E_{\rm p.2} = 48.9 \text{ kJ/mol}$$
(6)

For H<sub>3</sub>PO<sub>4</sub>-N<sub>1923</sub> oscillating system:

| Table 1 | l Val | ues of | $t_{\rm in}$ , | $t_{\rm p.1}$ and | $ t_{p.2} $ | obtained | at | different | temperatures' | 3 |
|---------|-------|--------|----------------|-------------------|-------------|----------|----|-----------|---------------|---|
|---------|-------|--------|----------------|-------------------|-------------|----------|----|-----------|---------------|---|

| T (K) - | HCl-N <sub>1923</sub> system |                        |                        | I                  | IOAc-N <sub>1923</sub> syst | tem                    | H <sub>3</sub> PO <sub>4</sub> -N <sub>1923</sub> system |                                             |                                             |
|---------|------------------------------|------------------------|------------------------|--------------------|-----------------------------|------------------------|----------------------------------------------------------|---------------------------------------------|---------------------------------------------|
|         | t <sub>in</sub> (min)        | t <sub>p.1</sub> (min) | t <sub>p.2</sub> (min) | $t_{\rm in}$ (min) | $t_{\rm p.1}({ m min})$     | t <sub>p.2</sub> (min) | $t_{\rm in}$ (min)                                       | $t_{\mathrm{p.1}}\left(\mathrm{min}\right)$ | $t_{\mathrm{p.2}}\left(\mathrm{min}\right)$ |
| 298     | 485                          | 360                    | 295                    | 440                | 290                         | 205                    | 1675                                                     | 655                                         | 500                                         |
| 303     | 450                          | 280                    | 215                    | 385                | 245                         | 175                    | 955                                                      | 285                                         | 210                                         |
| 308     | 420                          | 220                    | 160                    | 350                | 175                         | 125                    | 725                                                      | 190                                         | 125                                         |
| 313     | 390                          | 180                    | 120                    | 300                | 145                         | 80                     |                                                          |                                             |                                             |

<sup>&</sup>lt;sup>a</sup> Initial concentrations of the acids: HCl, 0.10 mol/L; HOAc, 0.30 mol/L; H<sub>3</sub>PO<sub>4</sub>, 0.30 mol/L.

Table 2 Values of  $t_{\rm in}$ ,  $t_{\rm p,1}$  and  $t_{\rm p,2}$  obtained at different initial concentrations of acids at 308 K

| c (mol/L) | HCl-N <sub>1923</sub> system |                        |                        | ]                     | HOAc-N <sub>1923</sub> syst | tem                    | $H_3PO_4-N_{1923}$ system |                        |                        |  |
|-----------|------------------------------|------------------------|------------------------|-----------------------|-----------------------------|------------------------|---------------------------|------------------------|------------------------|--|
|           | t <sub>in</sub> (min)        | t <sub>p.1</sub> (min) | t <sub>p.2</sub> (min) | t <sub>in</sub> (min) | t <sub>p.1</sub> (min)      | t <sub>p.2</sub> (min) | t <sub>in</sub> (min)     | t <sub>p.1</sub> (min) | t <sub>p.2</sub> (min) |  |
| 0.025     | 340                          | 150                    | 100                    |                       |                             |                        |                           |                        |                        |  |
| 0.05      | 375                          | 180                    | 125                    |                       |                             |                        |                           |                        |                        |  |
| 0.10      | 420                          | 220                    | 160                    | 130                   | 120                         | 95                     |                           |                        |                        |  |
| 0.20      | 460                          | 245                    | 180                    | 220                   | 150                         | 110                    | 475                       | 105                    | 75                     |  |
| 0.30      |                              |                        |                        | 350                   | 175                         | 125                    | 725                       | 190                    | 125                    |  |
| 0.40      |                              |                        |                        |                       |                             |                        | 1050                      | 280                    | 210                    |  |
| 0.50      |                              |                        |                        | 525                   | 230                         | 155                    |                           |                        |                        |  |



Fig. 1 Power-time curves of oscillating system of hydrochloric acid at different temperatures ( $c_{HCl} = 0.10 \text{ mol/L}$ ).



Fig. 2 Power-time curves of oscillating system of hydrochloric acid at different initial concentration of acids (308 K).

$$\ln \frac{1}{t_{\rm in}} = 18.4 - \frac{7.70 \times 10^3}{T}$$

$$r = 0.9829 \quad E_{\rm in} = 64.0 \text{ kJ/mol}$$
(7)

$$\ln \frac{1}{t_{\rm p.1}} = 31.8 - \frac{1.14 \times 10^4}{T}$$

$$r = 0.9826 \quad E_{\rm p.1} = 94.8 \text{ kJ/mol}$$
(8)

$$\ln \frac{1}{t_{\rm p.2}} = 36.6 - \frac{1.27 \times 10^4}{T}$$

$$r = 0.9909 \quad E_{\rm P.2} = 106 \text{ kJ/mol}$$
(9)

Where  $E_{\rm in}$ ,  $E_{\rm p.1}$  and  $E_{\rm p.2}$  ( = E ) are apparent activating parameters.

Effects of initial concentration of acids on the oscillating systems

Analyzing the data in Table 2, it is found that there is a linear relationship between  $\ln t_{\rm in}$ ,  $\ln t_{\rm p,1}$  or  $\ln t_{\rm p,2}$  and the logarithm of the initial concentrations of the inorganic acid. From the plots of  $\ln t$  vs.  $\ln c_{\rm acid}$ , following equations and the orders of the oscillating systems ( $n_{\rm in}$ ,  $n_{\rm p,1}$  and  $n_{\rm p,2}$ ) can be obtained.

For HCl-N<sub>1923</sub> oscillating system:

$$\ln t_{\rm in} = 6.37 + 0.147 \ln c_{\rm HCl} 
 r = 0.9992 n_{\rm in} = 0.147$$
(10)

$$\ln t_{\rm p.1} = 5.91 + 0.241 \ln c_{\rm HCl}$$

$$r = 0.9929 \qquad n_{\rm p.1} = 0.241$$
(11)

$$\ln t_{\rm p.2} = 5.69 + 0.290 \ln c_{\rm HCl} r = 0.9904 n_{\rm p.2} = 0.290$$
 (12)

For HOAc-N<sub>1923</sub> oscillating system:

$$\ln t_{\rm in} = 6.88 + 0.883 \ln c_{\rm HOAc}$$

$$r = 0.9971 \qquad n_{\rm in} = 0.883$$
(13)

$$\ln t_{\rm p.1} = 5.68 + 0.399 \ln c_{\rm HOAc}$$

$$r = 0.9914 \quad n_{\rm p.1} = 0.339$$
(14)

$$\ln t_{\rm p.2} = 5.22 + 0.301 \ln c_{\rm HOAc}$$

$$r = 0.9850 \qquad n_{\rm p.2} = 0.301$$
(15)

For H<sub>3</sub>PO<sub>4</sub>-N<sub>1923</sub> oscillating system:

$$\ln t_{in} = 7.98 + 1.14 \ln c_{H_3PO_4}$$

$$r = 0.9982 \quad n_{in} = 1.14$$
(16)

$$\ln t_{p,1} = 6.94 + 1.42 \ln c_{H_3PO_4}$$

$$r = 0.9997 \quad n_{p,1} = 1.42$$
(17)

$$\ln t_{p,2} = 6.66 + 1.47 \ln c_{H_3PO_4}$$

$$r = 0.9948 \quad n_{p,2} = 1.47$$
(18)

Combining Eqs. (1)—(9) with Eqs. (10)—(18), following non-linear relationships for the oscillating systems can be established successfully.

For the oscillating system of hydrochloric acid

$$\begin{split} t_{\rm in} &\propto c_{\rm HCl}^{0.147} {\rm exp}(\frac{1.35 \times 10^3}{T}) \\ t_{\rm p.1} &\propto c_{\rm HCl}^{0.241} {\rm exp}(\frac{4.33 \times 10^3}{T}) \\ t_{\rm p.2} &\propto c_{\rm HCl}^{0.290} {\rm exp}(\frac{5.59 \times 10^3}{T}) \end{split}$$

For the oscillating system of acetic acid

$$\begin{split} t_{\rm in} &\propto c_{\rm HOAc}^{0.883} {\rm exp}(\frac{2.32 \times 10^3}{T}) \\ t_{\rm p.1} &\propto c_{\rm HOAc}^{0.399} {\rm exp}(\frac{4.50 \times 10^3}{T}) \\ t_{\rm p.2} &\propto c_{\rm HOAc}^{0.301} {\rm exp}(\frac{5.88 \times 10^3}{T}) \end{split}$$

For the oscillating system of phosphoric acid

$$\begin{split} t_{\rm in} &\propto c_{\rm H_3PO_4}^{1.14} {\rm exp}(\frac{7.70\times10^4}{T}) \\ t_{\rm p.1} &\propto c_{\rm H_3PO_4}^{1.42} {\rm exp}(\frac{1.14\times10^4}{T}) \\ t_{\rm p.2} &\propto c_{\rm H_3PO_4}^{1.47} {\rm exp}(\frac{1.27\times10^4}{T}) \end{split}$$

## **Conclusions**

A new oscillating system of two-phase reaction of inorganic acid aqueous solution and primary amine  $N_{1923}$  in chloroform solution was found in solvent extraction system.

The induction period ( $t_{\rm in}$ ), the first oscillating period ( $t_{\rm p.1}$ ) and the second oscillating period ( $t_{\rm p.2}$ ) of these oscillating systems were determined by their power-time curves. The obtained values of  $t_{\rm in}$ ,  $t_{\rm p.1}$  and  $t_{\rm p.2}$  were all much longer than those in homogeneous oscillating system. These decreased with increasing temperature for a definite system, and increased with increasing acidic concentration at a definite temperature.

The apparent activating parameters and the orders of the oscillating systems were obtained by graphic method. These kinetic data are very useful in studies for oscillating systems.

#### References

- 1 Belousov, B. P. Sb. Ref. Radiat. Med. 1959, 145, 1958.
- 2 Li, H. X.; Xu, H. H. Acta Chim. Sinica 1991, 49, 451 (in Chinese).
- 3 Yuan, C. L.; Li, Z. X.; Wang, J. C. Acta Phys. Chim. Sin. 1994, 10, 87 (in Chinese).
- 4 Li, Z. X.; Yuan, C. L. Chin. Sci. Bull. 1993, 38, 191 (in Chinese).
- 5 Li, H. X.; J, P. C.; Xu, H. H. Chem. J. Chin. Univ. 1991, 12, 1400 (in Chinese).
- 6 Sun, H. T.; Wang, X. Z.; Liu, Y. J.; Nan, Z. D.; Zhang, H. L. J. Therm. Anal. Calorim. 1999, 58, 117.
- 7 Zhang, H. L.; Yu, X. F.; Yu, L.; Li, F. H.; Nan, Z. D.; Sun, H. T. J. Therm. Anal. Calorim. 2001, 65, 755.
- 8 Ma, J. H.; Sun, S. X. Chin. J. Appl. Chem. 1997, 14, 70 (in Chinese).
- 9 Wang, Z. H.; Gao, Z. L.; Sun, S.X.; Shen, J. L. Chem. J. Chin. Univ. 1992, 13, 1153 (in Chinese).
- 10 Gao, Z. L.; Jia, Y. F.; Sun, S. X.; Feng, D. C.; Shen, J. L. Chem. J. Chin. Univ. 1994, 15, 1439 (in Chinese).
- Gao, Z. D.; Liu, J. L.; Han, D. G.; Shen, S. G.; Wang, A. Z. Acta Phys. Chim. Sin. 1993, 9, 218 (in Chinese).

(E0112107 LI, L. T.)